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Free-form shape optimization of airfoils to minimize drag directly poses unexpected difficulties. Practical expe-
rience has indicated that a deterministic optimization for discrete operating conditions can result in dramatically
inferior performance when the actual operating conditions are different from the (somewhat arbitrarily selected)
design conditions used during the optimization. Extensions from single-point to multipoint optimization have
proven unable to remedy this problem of localized optimization adequately near the sampled operating conditions.
An intrinsically statistical approach is presented, and how the shortcomings of traditional optimization methods
can be overcome is demonstrated. We discuss two algorithms. The first one is based on a numerical evaluation of
the expectation integral during each optimization step. The second one is based on a closed-form second-order
analytic approximation of the integration. The airfoil geometry optimization example (inviscid Euler flow) also
reveals how the relative likelihood of each of the operating conditions is automatically taken into consideration
during the optimization process. This is a key advantage over the use of multipoint methods.

Nomenclature
c = chord length
c = lift coefficient
¢ = target lift coefficient

c,d wave drag coefficient

d = design vector

fx(x) = probability density function of the random variable X

M = freestream Mach number

Mg, = divergence Mach number

M = mean freestream Mach number

m = number of design conditions considered

t/c = relative thickness of airfoil

var() = variance of random variable

w = weighting coefficient

X,y = Cartesian coordinates of the spline control
nodes that describe the airfoil geometry

o = angle of attack, deg

€ = random error

0 = risk associated with design

Vuyc, = firstderivative of ¢; with respect to M

Introduction

URING the design processof a structure or device,appropriate
values need to be selected for the design variables, such that
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the performance of the design is optimized. The specification of
one or more design operating conditions allows the engineer to use
deterministic optimization schemes. An example hereofis found in
airfoildesign, where a cruise Mach number and targetlift coefficient
are specified and the objective is to minimize the drag under those
constraints.

Optimization of an analytical model is a tool to develop better de-
signs. Recent advancesin computing power and the developmentof
more accurate computational fluid dynamics (CFD) codes should,
at least in theory, allow one to compute the optimal shape of an
airfoil for a particular application. Unfortunately, the use of de-
terministic optimization techniques leads to unexpected problems.
Broadly speaking, two families of shape optimizationstrategies can
be distinguished:

1) The first strategy is knowledge-based: An empirical algebraic
expression of airfoil geometry is selected and the optimization pro-
cess determines the optimal values for the coefficients (such as max-
imum thickness, camber, radius of leading edge, etc.) that appearin
this expression.

2) The second strategy is free-form: The geometry is represented
by a linear combination of general basis functions (such as splines).
In principle, using more basis functionsto define the geometry leads
to a geometry representation with higher resolution.

The major advantage of the first approach is that it typically in-
volves a limited number of design variables and results in conven-
tional airfoil geometries. The free-form approach does not restrict
the geometry of the airfoil and has the potential to discover some
truly innovative designs. However, the free-form approach can also
lead to high-frequencyoscillationsand/or difficulty in enforcing ge-
ometry constraints. See Ref. 1 for a complete discussion of airfoil
parameterization options.

Another concern with shape optimization of airfoils is the sen-
sitivity of the final optimal design to small manufacturing errors
or fluctuations in the operating conditions. Tightening the toler-
ances in the manufacturing process may prove prohibitively expen-
sive or practically impossible to achieve. It is expensive to produce
such a precise design and impossible to maintain this pristine shape
during routine flight operations. Moreover, a certain variability or
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Fig.1 Uncertainty classification.

uncertainty in the operating conditions, for example, cruise Mach
number, cannot be avoided. The sensitivity of the design perfor-
mance to such relatively small uncertainties provides an incentive
to use so-calledrobustoptimizationmethods, which directly include
the effects of the uncertainties on the performance of an optimized
design.

Several differentnondeterministicapproaches(Taguchi methods,
bounds-based, minimax, fuzzy, and probabilistic methods) can be
used to achieve robustness of an optimal design. This research deals
with robust design of airfoils to address uncertain operating condi-
tions. Other researchershave worked in the field of reliability-based
design and have studied reliability-based optimization of aerospace
structures and compressor blades (for example, Refs. 2 and 3).
Figure 1 explainsthe differencebetweenrobustandreliability-based
design problems. In an engineering context, risk is typically defined
as the productof the probability and the impact or consequenceof an
event.* Structural reliability techniquesare particularly useful to as-
sess the risk associated with infrequent but potentially catastrophic
events (such as turbine blade failures’). On the other hand, robust
optimization techniques account for the impact of everyday fluc-
tuations of parameters (such as variations in cruise Mach number)
on the overall design performance, assuming that no catastrophic
failures occur.

Achieving Robustness

Developing optimization methods that result in more robust de-
signs sounds appealing. The term robustness means a variety of
things; there are four popular goals of robust design:

1) Identifydesignsthat minimize the variabilityof a manufactured
productunder uncertain processing conditions. This is the objective
of Taguchi methods®; they are most practical when the variance of
the objective can be reduced at negligible cost.

2) Mitigate the detrimentaleffects of the worst-case performance.
This is the objective of minimax strategies.” They choose a design
with the best worst-case performance.

3) Obtain a uniform improvement of the performance function
over the entire range of the operating conditions®

4) Provide the best overall performance over the entire lifetime
of the structure or device?

In this paper, the focusis on the lastdefinition: robustoptimization
that tries to achieve the best expected performance (or minimal
expected cost) with respect to uncertain operating conditions. We
introduce a nondeterministic method and compare its results with
the more traditional multipoint optimization method.

To our knowledge, nondeterministic approaches are quite new
to aerodynamic optimization. First, we define a practical airfoil
shape optimization problem that will be used to compare various
optimization strategies. Then, an overview of existing deterministic
attempts at introducing robustness is presented. Subsequently, we
discuss an inherently statistical approach based on Von Neumann-
Morgenstern’s maximum expected value criterion (see Ref. 9).
Numerical results for a two-dimensional airfoil shape optimiza-
tion problem obtained using different optimization strategies are
compared.

Airfoil Optimization Problem in Transonic Regime
Problem Formulation

In this section we presenta transonicairfoil optimizationproblem
to which the various direct optimization strategies will be applied.
All optimizations use the NACA-0012 airfoil with a sharp trailing
edge as the baseline geometry. The NACA-0012 is represented by
splines using 23 control nodes. Because the NACA-0012 is not
suitable for the transonic regime, substantial improvements are to
be expected.

The design variables in the optimization problem are given by
the vertical positions of the control nodes and the angle of attack «.
Three control nodes are in locked positions: one at the leading edge
and a double control node at the trailing edge. Box constraints limit
the maximum movement of each of the 20 spline control nodes
(Fig. 2). This results in a reduced thickness t/c of the optimized
airfoils; typically, the final ¢ /c ratio is about 0.1, which means that
the reduction of the wave drag is at least in part due to the reduction
of the relative thickness # /c.

The inviscid Euler equations for the flow are discretized on un-
structuredmeshes.'® The sensitivitiesof both lift and wave drag with
respect to the design parameters are efficiently calculated using a
discrete adjoint formulation.!!

The objectiveis lift-constrainedwave drag minimization over the
Mach range M €[0.7, 0.8]:

min cy(d, M)
deD

subjectto ¢;(d, M) >c} over M €[0.7,0.8] 1)
where d is the vector of design variables and D is the design space.
The minimum lift constraint corresponds to typical values found
for commercial transport airliners.!? In this study, the Mach num-
ber is the only uncertain parameter; no additional model uncer-
tainties are included. No constraints are imposed on the pitching
moment.

Grid Convergence

Four different grid resolutions were used to check the conver-
gence of the flow solution, especially the wave drag ¢,. The far-
field boundary for grid 1 is located at 10 chord lengths. For grids
2, 3, and 4 (Fig. 3), the far-field boundary is located at 50 chord
lengths. For each of the grids the number of elements along both
the airfoil inner boundary and the circular far-field boundary are

Fig.2 Design variables and box constraints for the airfoil (schematic).
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Fig.3 Baseline NACA-0012 airfoil: grid 2.
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specified in Table 1. Grid generator details are availablein Ref. 13.
Figure 4 shows the drag profile in the Mach range M € [0.7, 0.8]
for a constantangle of attack o« = 1.5 deg. Grids 1 and 2 are consid-
ered low-fidelity models, whereas grid 4 is the high-fidelity or truth
model. Because grid 1 is too coarse, we used grid 2 for the actual op-
timizations. On completion of the optimization,a check using grids
3 or4 can be performed. The idea s to use the fast low-fidelity grids
as much as possible, but to verify the results using the high-fidelity
grids.4

Figure 4 reveals that grids 1 and 2 overestimate the wave drag.
The overestimation of grid 1 has a double cause: It is an extremely
coarse grid, and the far-field boundaryis located at 10 chord lengths
only. The overestimation in grid 2 is smaller than for grid 1 and
occurs in equal amounts irrespective of the Mach number. There is
virtually no differencein the drag profiles computed on grids 3 and
4. Very similar grid-induced differences in the drag profiles were
observed in the Mach sweep curves (¢, as a function of M) for the
optimized airfoils.

Table1 Grids used in examples: grid 1 is generated using
Double9; all other grids are generated using AFLR"?

Airfoil Far-field

Grid  element element Nodes Faces Elements
1 129 32 411 1,170 822
2 124 32 3,060 9,025 6,120
3 250 64 9,246 27,424 18,492
4 500 128 32,067 95,574 64,134
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Fig.4 Drag profiles for NACA-0012 on all four grids (a = 1.5 deg).
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Deterministic Approach to Airfoil Shape Optimization
Single-Point Optimization
In a deterministic context, aerodynamic shape optimization of
airfoils is concerned with obtaining the most aerodynamically fa-
vorable geometry for fixed, either known or assumed, operating or
design conditions. Consider the practical case where the drag ¢, is
to be minimized at a given, fixed freestream Mach number M, :

min ¢,(d, M)
deD
subjectto ¢, (d, M,) > ¢} @)

This deterministic, single-point optimization model is not nec-
essarily an accurate reflection of the reality. The formulation in
Eq. (2) contains no informationregarding off-design condition per-
formance. It is documented by other researchers'” that, with for-
mulation Eq. (2), the drag reduction is attained only over a narrow
range of Mach numbers (Fig. 5a). In this paper we will refer to this
as localized optimization.

It can be concluded that the real problem is not with the opti-
mization code, which s likely to perform well, but with the problem
formulation of Eq. (2). The local optimization effect is particularly
worrisome if substantial variability is associated with the operating
conditions. Explicit tradeoffs between different design conditions
should be considered in the problem formulation.

Multipoint Optimization
A straightforward, but heuristic, approach to avoid localized op-
timization is to consider different Mach numbers and to generalize
the objective in Eq. (2) to a linear combination of flight conditions
(m 1in total):
m

min Z w;cqy(d, M;)

deD

subjectto ¢;(d, M;) > ¢} for j=1,....m 3)

Practical problems arise with the selectionof the flight conditions
M; and with the specification of the weights w;. There are no clear
theoretical principlesto guide the selection, whichis, in fact, largely
left up to the designer’s discretion (see, for example, Refs. 15-17).

With the multipoint formulation of Eq. (3), an improved ¢, canbe
realized overa wider range of Mach numbers M (Ref. 15). However,
this formulation is still unable to avoid localized optimization. In
fact, multiple bumps might appear on the airfoil, one associated with
each flight condition M;. In the transonic regime, each bump occurs
at the shock foot location for each of the sampled Mach numbers.'?

An illustration of localized optimization is given in Fig. 6. This
optimization was performed on grid 2, with target lift ¢; = 0.4, us-
ing equal weight (w; =0.25) for each of four design conditions.
Because the drag is highest at the higher Mach numbers, the drag
at those Mach numbers has been reduced significantly during the
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Fig.5 Single-point optimization using grid 2 and ¢; = 0.2: drag profile and airfoil geometry.
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optimization process. Figure 6 clearly indicates that these drag im-
provements occur only at particular Mach numbers and are rapidly
lost when the actual Mach number deviates from the selected design
Mach numbers. This effect is particularly pronounced for the high
Mach numbers.

Figure 7 explains this in more detail using two contour plots
of the local Mach number. The operating conditions (freestream
Mach numbers) are very similar, but the flow solutions (local Mach
number) are very different. The multipoint optimization process in-
troduces geometric features to the airfoil that lock the shock waves
in place. Because we used four point optimization, we have four
shocks (see also Ref. 15). In Fig. 7a, four shocks can be distin-
guishedalongthe top surface.In Fig. 7b, the most-aftshock has basi-
cally disappeared. The optimizer has locally modified the geometry
and eliminated the shock associated with Mach 0.8, which was one
of the design conditions.

Alternative Strategies

Because derivativeshave to be calculated for each variable at var-
ious operating conditions, the computational cost associated with
multipoint optimization using CFD is substantial. Alternate meth-
ods, whichincorporatesome common-senseengineeringknowledge
into the optimization process, may be a valuable and cheaper alter-
native. One such example is the method of the weighted average of
geometries (WAG).'®

In the WAG method, the optimal design is obtained as a weighted
average of n single-pointoptimal designs, each one of them corre-
spondingto one of the n chosenoperating conditions. The weighting
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Fig. 6 Drag profile for a four-point optimization using grid 2 and
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factors depend on the relative importance of each operating condi-
tion [similar to the w; in Eq. (3) for multipoint design]. However,
a key feature of this optimization method is that it still requires the
formulation of some aggregate objective function, which describes
the overall, or aggregate, performance of the design as a function of
the variable Mach number.

The method requires the designer to select appropriate weights
before the optimization process is started. As a result, the quality of
the optimum solution is directly related to the actual choice of the
selected weights. Sometimes such a choice may be quite difficult to
make, and this selection introduces some arbitrarinessin the design
process.

In the analytic hierarchy process,'® the weights can be changed
during the optimization process itself. For each optimizationstep, a
pairwise comparisonmatrix can be defined thatindicates the relative
importance of each of the design conditions at the current iteration
step in the optimizationprocess. The method monitors the optimiza-
tion progress and gives the designer the opportunity to adjust the
relative weight accordingly.

The needto adjustthe weightsis eliminatedaltogetherin Messac’s
physical programming method."” In this method, the designer ex-
presses preferences concisely using a classification function. Ex-
amples thereof are smaller-is-better, range-is-better, and must-be-
larger. In addition a degree of desirabilityis associated with each of
these classes, ranging from unacceptableto highly desirable. By the
use of these preference functions, the differentdesign metrics are all
mapped onto a dimensionless scale on which the actual optimiza-
tion is performed. The method seems quite well suited for problems
where various objectives have different dimensions, such as range
and speed.

Nondeterministic Approaches
Design as a Decision-Making Process

During the airfoil design process, appropriate values of the design
variablesd need to be selected that optimize the performanceor the
utility of the airfoil design. The designer has full control over the
design variables, such as the geometry of the structure and the type
and grade of materials used for it, but the operating conditions of a
structure or device, such as the loads or the operating speeds, will
typically vary during the design lifetime.

Because each operating condition parameter may take on arange
of values over the lifetime of the design, it is possible to collect
their histograms (and joint histograms). From a subjectivist point
of view, the parameters representing operating conditions are then
effectively modeled as random variables.

The preceding sectionindicated that a specific airfoil design may
perform exceptionally well for a selected freestream Mach number
M, but may perform poorly for other values of M. The impact of
the uncertainty of M on the design performance should be taken
into account when the quality of a particular design is assessed.

Operating condition: free flow Mach number is 0.8
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Fig.7 Local Mach number for two free-flow conditions after four-point optimization using grid 2 and cl* =04.
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Bounds-Based Methods

Bounds-based methods recognize that a designer does not have
access to data with unlimited precision: some of these data are in-
trinsically variable (operating conditions), some of them can be col-
lected or measured with limited precision only (sampling error),
and sometimes the measurement process itself is imperfect, which
introduces bias. Gu et al.?° recognize that analytical and numerical
models fail to yield the correct result; they call the difference be-
tween the average experimentaldata and the value obtained from the
analysis code the bias error. All other errors are lumped into random
variability. They assign bounds to each of those uncertainties and
develop a methodology to incorporate the bounds directly into the
multidisciplinary design optimization 2!

In our opinion, the main drawback of bounds-based methods is
that they essentially assume that all outcomes within the specified
bounds are equally likely to occur. This conflicts with the intuitive
sensethat, by their very definition, extremes should occur with much
lower frequency than average or normal behavior. This implies that
error bounds will grow quiterapidly as more and more uncertainties
are explicitly considered in the design or optimization process. An
explicitly statistical approach takes the relative likelihood of com-
bined extremes vs other joint occurrences into account by means
of the probability density function (PDF). In summary, the bounds-
based approach has two drawbacks:

1) Bounds cannot always be identified accurately.

2) Bounds-based methods are overconservative.

Explicitly Statistical Problem Formulation

Reconsider the basic problem in Eq. (1): Minimize the drag ¢,
overarangeof free-flow Mach numbers M while maintaining the lift
¢; = ¢;. Note that M is now treated as a random variable. The opti-
mization problem Eq. (2) is now interpretedas a statistical decision-
making problem.

In the presence of uncertainty, a designer is forced, in effect,
to take a gamble. Under such circumstances, rather than naively
hoping for the best or conservatively focusing on the worst, the
right decision consists of the best possible choice of the design,
whether favorable or unfavorable operating conditions occur. All
decision problems have two essential characteristics’:

1) A choice, or sequence of choices, must be made among various
possible designs.

2) Each of these choices corresponds to a performance, but the
designer cannot be sure a priori what this performance will be. The
exact performance also depends in part on unpredictable events, in
this case the operating conditions.

In ourexample, only one initial choiceregarding the designneeds
to be made; the airfoil geometry must be selected. According to the
Von Neumann-Morgenstern statistical decision theory (see Ref. 9),
the best course of action in the presence of uncertainty is to select
the design airfoil that leads to the lowest expected drag. This is
commonly known as the maximum (or minimum) expected value
criterion. The risk p, associated with a particulardesignd, is identi-
fied as the expected value of the perceived loss associated with the
design. The best design or decision, which minimizes the overall
risk, is referred to as Bayes’s decision. In our problem formulation,
Bayes’s risk p* and Bayes’s decision d* are given by Egs. (4) and
(5), respectively:

pr=min [ c;(d M) fu(M)dM

subjectto ¢,(d, M) > c} for all M “4)

or
o* =/cd(d*,M)fM(M)dM (5)

where f,;(M) is the PDF of the free-flow Mach number M.

The practical problem with formulation (4) is that integration
is required in each of the optimization steps. Because the objec-
tive function ¢, is computationally expensive to evaluate, this ap-
proach, although theoretically sound, becomes prohibitively expen-
sive. Therefore,a computational scheme that minimizes the number
of function calls is desirable.

In addition, the physical and mathematical models themselves
used for the objective function will not be error free. Each of these
model errors can be treated as a random variable. Their effect on
the optimal solution is readily assessed by extending the integration
over these additional random variables.

Note that in this problem we are not concerned with rapid Mach
number variations. Only slowly varying Mach numbers (steady
states) are considered. Because the Mach number is constant for
a certain length of time, the angle of attack can be adjusted to reach
the requiredlift ¢;. Consequently, the lift constraintin Eq. (4) is not
probabilistic but remains deterministic.

Analytic Approximation of the Expectation Integral

When the variability of the free-flow Mach number M is not too
large, a second-orderTaylor series expansion of ¢; around the mean
value M may be a sufficiently accurate model of the variation of the
drag ¢, with respectto M:

ca(d, M) = ¢,(d, M) + Ve, - (M = M) + Ve - (M — MY
©6)

When substituted in Bayes’s risk expression (4), the linear term
Vucq - (M — M) in Eq. (6) disappears after integration over M be-
cause the Taylor series is built around the mean value M. Bayes’s
risk Eq. (5) can be approximated by

p"=min [cs(d, M)+ var(M)Vy,cq(d. M)]
€
subjectto ¢;(d, M) = ¢ for all M @

where var(M) denotes the variance of the Mach number M.

It seems that we have substituted an integration with an almost
equally expensive computation of a second-order derivative. How-
ever, this theoretical result provides additional insight into the prob-
lem. It follows from Eq. (7) that the variability of M can affect
the optimal design only if the objective function ¢, is highly non-
linear in this parameter. This is the case near the drag divergence
Mach number My;,, where the drag undergoes a sharp increase (see
Fig. 5a).

In mathematical terms, the advantage of working with expected
utilitiesis that the minimumis second-orderaccurate with respectto
variationsin the parameters. This ensuresa more global solutionand
localized optimization will be avoided. This can also be explained
in an intuitive manner: The second-orderderivativeis a measure for
the curvature. Because this curvature is now a part of the objective
function, a design that results in a drag trough or cusp at M as
found in the optimal solution in Fig. 5 will not be accepted by the
optimizer. The high curvature of the cusp at M would increase the
objective in Eq. (7), and excessive localized optimization will be
avoided.

Direct Numerical Evaluation of Expectation
and Comparison with Multipoint Optimization

The integrationwith respectto M in Eq. (4) can also be performed
numerically. Irrespective of the chosen integration scheme, integral
(4) can formally be written as (m integration points)

p* = min ; wy - co(d, M) + e(m) ®)

where the integration error € (m) — 0 as m — 0o.

Formulation Eq. (8) is strikingly similar to Eq. (3). It is, there-
fore, interesting to analyze how Bayes’s decisiond™ compares with
the multipoint solution and exactly how localized optimization is
avoided. In the multipoint approach, the design condition Mach
numbers and weights need to be selected by the designer. In the
statistical approach, the Mach numbers are determined by the in-
tegration scheme. The weights are directly related to the relative
importance of each Mach number through the integration over the
probability density. In short, the statisticalapproachremoves the ar-
bitrariness from the weighting process. Comparison of Eq. (3) with
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Fig. 8 Final drag rise obtained for three-point optimization; actual
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Eq. (8) reveals the shortcoming in the multipoint formulation that
causes localized optimization. Numerical integration of Eq. (4) re-
sults in Eq. (8) and includes a random, zero-mean error term € (1),
which decreases as the number of sampling points increases. The
multipointoptimizationEq. (3) differs from Eq. (8) only in the sense
that this error term is not explicitly consideredin the objective func-
tion. However, omitting this term alters the structure of the problem
at hand.

The multipoint optimization looks for the design, which mini-
mizes the weighted sum of the goal function c¢,, evaluated in the m
specified points M;. There is no control over the objective function
¢4 in the neighborhoodaround these m sampling points. Experience
by other researchers’? and the preceding deterministic examples
have indicated that significant troughs in plots of ¢, vs M are in-
troduced near the sampling points, as illustrated in Fig. 8. In effect,
multipointoptimization will prefer a designd, over a designd, even
when design d, is considerably worse than design d, in all but the
m specified sampling points. The multipoint formulation allows the
optimizer to mold the goal function ¢, to its own advantage. What
was originally a random integration error is no longer random, and
the discrete sum in Eq. (3) no longer approximates the integral in
Eq. (4) at all.

This undesirable behavioris avoided if we can prevent the opti-
mizer from exploiting the approximationerror in Eq. (8) to its own
advantage. We need to make sure that the discrete sum in Eq. (8)
remains a good approximation of the integral in Eq. (4) throughout
the optimization process (Fig. 8). An elegant solution is to add a
small random perturbation to the sampling points M, in the eval-
uation of the integral. This ensures that the optimizer maximizes
the performance not just for m specific values of M, but for any
set of values M;, k=1, ..., m. To minimize the loss of accuracy
in the integration due to random location of the integration points,
stratified sampling can be used to generate the values of M. Our
experience with the spline-based integration also suggests that the
sampling points should not be allowed to be arbitrarily close to each
other.

However, with this scheme, a repeated evaluation of the objec-
tive function ¢, for identical values of the design parameters d will
lead to different results. This makes it hard to identify whether a
new design is really better than a preceding one, or if the improve-
ment should be attributed to random fluctuations instead. When a
trial solution d is still far away from the optimal solution d*, large
improvements Ac,; can be expected. This means that a very crude
integration, which requires very few function evaluations, will suf-
fice in the early stages of the optimization. The improvement of
the goal function is expected to be smaller closer to the optimal
solution, and more sampling points M; will be required to keep
the integration error small enough. Current research focuses on the
development of a strategy that takes maximum advantage of this
effect.

Application to a Two-Dimensional
Airfoil in Transonic Regime
Various Optimization Strategies

In this section we compare results for the various optimization
strategies presented in this paper. We apply the sequential linear
programming® (in iSIGHT Ver. 5.5, a product of Engineous Soft-
ware, Inc.2*) to the lift-constrained airfoil optimization problems
introduced earlier. We assume that the Mach number variations are
bounded between 0.7 and 0.8. In particular, the following optimiza-
tion formulations are compared:

1) In single-point optimization, various Mach numbers are con-
sidered as the design point.

2) In, multipoint optimization, each of the m design conditions
has predetermined fixed weights [see Eq. (3)].

3) In expected value optimization, to allow for a direct compar-
ison with the multipoint results, fy (M) in Eq. (4) is a uniform
distribution.

4) The approximate second-order second-moment (SOSM)
method is based on a mean value M =0.75; the variance is set
equal to the variance of the uniform PDF used in formulation 3 [see
Eq. (D]

Note that formulations 2 and 3 require comparable omputational
effort.

Single-Point Optimization Results

The single-pointcase has 21 design variables: the angle of attack
o and the vertical positions of the 10 spline control nodes at both
the top and bottom surface of the airfoil. Figure 5a indicates that a
dramatic reduction of the drag ¢, is obtained at M =0.76 (also see
the first entry in Table 2), but it also reveals that this gain is rapidly
lost when the free-flow Mach numberis away from this design value.

The geometry plot in Fig. 5b illustrates what happens. Dur-
ing the optimization a distinct bump is formed on the airfoil sur-
face. The optimizer takes advantage of all degrees of freedom
to achieve the lowest possible drag at the design Mach num-
ber M =0.76, irrespective of what happens to the drag at other
Mach numbers. Obviously, there is a penalty to be paid for this:
Even though the drag reduction at the design Mach number is
60%, the total average reduction over the entire Mach range is
only 18%. The use of a single-point optimization would lead to
the false conclusion that a 60% improvement has been achieved;
the actual realized gain is only 18%. Of course, because only
loose box constraints were applied to the control nodes, some
of this drag reduction must be attributed to a reduction of the
relative thickness #/c. The t/c ratio for all optimized airfoils is
about 0.1.

Qualitatively similar results are obtained for other lift values and
design Mach numbers and are summarized in Table 2. The localized
optimization, illustrated in Fig. 5, was previously documented by
Drela.! Figure 9 shows that the bump on the airfoil moves aft when
the Mach number increases. This pushes the shock toward the trail-
ing edge and postpones the drag rise. Figure 10 indicates that the
choice of the design Mach number considered in the optimization
has an enormous impact on the final drag profile and airfoil geom-
etry. Figure 10 shows that simply selecting the mean Mach number
(M =0.75) or the Mach number with highestdrag (M =0.80) does
not guarantee good overall performance over the entire Mach range.

Table2 Comparison of the drag reductions with respect
to the original NACA-0012 at the design point and over the entire
Mach range for single-point optimization results

Target Design Mach Acy at the Total reduction Acy
lift ¢; number M design point, % over Mach range, %*
0.2 0.76 60 18
0.4 0.75 84 52
0.6 0.72 85 30
0.6 0.75 87 53
0.6 0.78 91 78
0.6 0.80 75 57

4This is the relative reduction of the area under the curve ¢; vs M compared to the
baseline NACA-0012.
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Fig. 9 Bump locations for different design Mach numbers for single-
point optimization (c; = 0.6).
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Fig.10 Single-pointoptimizationresults for various design Mach num-
bers (c; = 0.6).
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Fig.11 Optimal drag profiles obtained using different two-point opti-
mization strategies (w; = w, = 0.5 and ¢ = 0.6).

Multipoint Optimizations

The constrained multipoint optimization has (20+m) design
variables: the same 20 y coordinates that describe the geometry
and m angles of attack. Because of compressibility effects, the min-
imum angle of attack for which the lift constraint is satisfied de-
creases with increasing free-flow Mach number.”> Consequently,
each design condition adds one additional angle-of-attack design
variable.

The two-pointoptimizationresults shown in Fig. 11 illustrate the
shortcomings of this method, which were also reported by Drela.'
Optimization at selected Mach numbers results in clearly distin-
guishabledrag troughs at each of the design Mach numbers (Figs. 6
and 7). Drela leaves it up to the designer to determine which Mach
numbers to include in the objective in Eq. (3) and which weights to
choose. Three reasonable selections are compared with each other

0.025 4

0.020 1 Mach numbers 0.700, 0.733, 0.767 and 0.800
wenees Mach numbers 0.735, 0.770, 0.785 and 0.800

0.015 +

0.010 4

wave drag coefficient ¢,

0.005

0.000 T T T T
0.70 0.72 0.74 0.76 0.78 0.80

Mach number

Fig. 12 Drag profile obtained using different four-point optimization
strategies (¢, = 0.6).

in Fig. 11: the endpoints of the Mach interval and selected interior
points. Itis clear that, at leastin this case, the selection of the design
conditions has an important effect on the final results. In particu-
lar, the selection of the endpoints of the Mach range can lead to
troubling results. We observed this in both two-point (Fig. 11) and
four-point (Fig. 12) optimization.

Because the drag is higher in the upper part of the Mach range,
one may want to include more design Mach numbers from the upper
part than from the lower part in the multipoint objective function
in Eq. (3). This procedure does not require any additional function
calls, keeping the computational cost under control, and it should
resultin lower drag at the upper end of the Mach range. Figure 12
shows the result of such a multipoint optimization. The selected
Mach numbers are indicated on the chart, and the weights w; are
obtained from the numericalintegrationusing four fixed integration
points. The maximum drag is reduced, but a penalty is paid near the
lower end of the Mach range. In fact, the expected value of the drag
has increased from 0.0044 to 0.0055 (assuming a uniform distri-
bution for the Mach numbers between 0.7 and 0.8) compared with
the result for evenly spaced Mach numbers. Also, the drag trough
at each sample Mach number persists, which indicates localized
optimization, as explained earlier.

These results indicate that a multipoint optimization achieves a
better overall drag reduction than single-pointoptimization for both
sets of design Mach numbers. This is in line with the findings of other
researchers.!*> However, a drag trough may form at or near each of
the discrete design points, in which case the drag increases rapidly
away from the design points. This effect becomes more pronounced
near the high end of the Mach range.

In his study, Drela!® applies larger weights to the upper part of
the Mach range to ensure “that the upper part is not compromised
excessivelyby the less importantlower part.” Our statisticaldecision
approach suggests that this can only be justified when the higher
Mach numbers are more likely to occur, that is, when the PDF
fu (M) is concentratedin the upper Mach range. The weights follow
automatically from the integration procedure and are, as such, not
directly linked to the actual values of the drag ¢, (M).

Expected Value Optimization

For the expected value (EV) scheme the integration points in
Eq. (4) are altered slightly for each optimization iteration. Conse-
quently, we can say that the four-point optimization minimizes a
weighted sum of four fixed design conditions, whereas the scheme
minimizes the weighted sum of any four design conditions. This
avoids localized optimization. In this study, relatively small ran-
dom perturbations are used to change the integration points, but
other, more adaptive strategies are currently being researched. The
number of integration points must be sufficiently high so that the
integrationerror caused by the change of integration points between
optimizationsteps is smaller than the decrease of drag in that partic-
ular optimization step (see subsection Direct Numerical Evaluation
of Expectation and Comparison with Multipoint Optimization).
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Fig. 13 Drag profile obtained using different optimization strategies
(c; =0.6).
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Fig. 14 Comparison of SOSM result with single-point optimization
(c; =0.6).

Figure 13 shows that EV optimization strategy results in a much
smoother drag profile over the entire Mach range. The integra-
tion of drag over the Mach range is performed using spline-based
inter/extrapolation. The resulting airfoil geometry is somewhat
smoother as well. It may be concluded that, for the same com-
putational effort as multipoint algorithm, the EV scheme results in
a superior design.

Obviously, the Mach number will not be uniformly distributed
overagivenrangeduringoperationof an aircraft. A key advantageof
the explicitly statistical approach is that the relative importance of
each operating condition is automatically accounted for through
the PDF. Fluctuations of the Mach number during the flight can be
modeled using a truncated Gaussian distribution. Detailed results of
this case are presented in Ref. 26.

Approximate SOSM

In this section we present results using the deterministically
equivalentproblem formulation(7). Equation (7) indicates that first-
order sensitivities of the drag ¢, with respect to the uncertain vari-
able M do not affect the expected value of the design. The second-
order information represents the curvature of the ¢, (M) curve, and
a large value of curvature near a design Mach number is indicative
of localized optimization. In the SOSM formulation, the weighting
between the drag and the curvature is determined by the variance
of the Mach number. Figure 14 shows a considerable reduction in
curvature of ¢, vs M using SOSM; for this analysis the variance
was set equal to the variance of a uniform distribution between 0.7
and 0.8.

The overalldragreductionis notas good as obtained using explicit
numerical integration (Fig. 13), but the computationaleffort is a lot
smaller. The method is particularly useful if higher-order deriva-

Table 3 Number of function/derivative evaluations
required per optimization step

Optimization 1 random 3 random
method variable variables
Single point 1 1
SOSM? 3 7
Expected value 4 64

(using four-point integration)

2SOSM requires less if analytic derivatives are available.

tives are available (and numerically reliable) and several uncertain
variables are present in the problem. Table 3 compares the relative
computational cost for each optimization step. SOSM scales lin-
early with the number of random variables (one additional second
derivative is required for each additional random variable in the
optimization), whereas full numerical integration rapidly becomes
expensive. Because the method is based on a second-order Taylor-
series approximation of the objective function, SOSM will give the
best results if the variance of the random variables is relatively
small.

Summary

The robustness of an optimal solution can be achieved by incor-
porating the variability of the operating conditions directly into the
optimization problem formulation. The practical application shows
that a statistical approach leads to smoother airfoil geometries and
wave drag profiles than traditional multipoint approaches.

The key featureof the suggestednondeterministicapproachis that
adesignerno longer needs to select which design conditions will be
includedin the aggregateobjectiveand what their respectiveweights
should be. The new formulation avoids such arbitrary selection of
design conditions and weighting factors because they automatically
follow from the procedure. The suggested expected value optimiza-
tion method is computationally similar to existing multipoint opti-
mization, which is widely accepted in industry. This increases the
likelihood of acceptance by both designers and theorists alike.

An SOSM approximate integration provides additional insight
into the problem. SOSM scales linearly with the number of design
variables and may be the only feasible alternative when a large
number of uncertainty parameters are involved. This will be the
focus of future research.

It can be concluded that airfoil shape optimization on the basis
of the Euler equations leads to some interesting candidate designs.
However, viscous effects need to be included to achieve more real-
istic pressure distributions and improved drag predictions.
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